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Wave packets, rays, and the role of real group velocity in absorbing media
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In an absorbing medium, where the vectorW5]v/]k usually is complex for real values of the wave vector
k, the group velocityW may become real for some complex values ofk. The role of real group velocity in the
propagation of one-dimensional wave packets in homogeneous absorbing media is examined. Applying the
saddle point method to an analysis of the asymptotic behavior of the Gaussian wave packets shows that for
absorbing media, at large times and distances, the real group velocity appears as a local characteristic of any
small section of a wave packet. For each section we can find the complex values of the local wave number and
the local frequency defining a real group velocity. Thus, the real group velocity concepts in absorbing media
do not have to be based on the signals having real wave vectors or real frequencies. The analysis of the exact
solution for a Gaussian wave packet in a medium with a complex law of dispersion describing whistler waves
in a collisional plasma is performed. It is shown that at all times the initial carrier wave number exists as a real
part of the local complex wave number at some point of the Gaussian envelope and this point moves with a
constant real group velocity. For large times the local wave group with the initial carrier wave number can be
found far away from the envelope center.@S1063-651X~98!05601-3#

PACS number~s!: 52.35.Lv, 42.15.Dp, 94.30.Tz
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I. INTRODUCTION

The concepts of wave packet~s! ~WP!, group velocity, and
ray tracing come up in many areas of physics—quant
mechanics, optics, plasma physics, fluid mechanics, s
state physics, geophysics, and astrophysics. The group v
ity concept seems to have been first introduced by Rayle
@1# for the transverse sound waves propagating in thin ela
rods. Since then this concept was applied to studying
and signals based on various kinds of waves in dispers
nonabsorbing media. The theory of WP in dispersive me
without absorption of the wave energy has been amply
cussed in the literature@2,3#. As is well known, any WP in a
homogeneous medium is constructed by the continuous
perposition ~integration! of the elementary plane wave
sinusoidal in both space and time, with neighboring value
the wave vectork and the frequencyv. Usually such a su-
perposition is presented in the form of the integral of t
function A(k)exp@i(k•x2vt)# in the k space. The disper
sion equationD(v,k)50 characterizes the properties of th
medium with respect to wave propagation. The spatial F
rier transform of the WP att50 is the functionA(k) con-
centrated in some vicinity of the carrier wave vectorkc . The
spatial maximum of the WP envelope propagates with
group velocityW5]v/]k calculated atk5kc .

The concept of rays in the theory of WP propagation
nonabsorbing media appears in studies of the asymptotic
havior of the WP for large values oft and uxu. A powerful
tool that leads to the asymptotic formulas for the WP so
tions is the saddle point~SP! method for the Fourier inte
grals. Whitham@3# shows that for large times each sma
section of the WP can be characterized by the instantan
values of the local wave vectork̃(x,t) and the local fre-
quency ṽ(x,t)5v@ k̃(x,t)#, where the dependencev
5v(k) is determined by the dispersion equationD(v,k)
571063-651X/98/57~1!/1005~12!/$15.00
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50. These local characteristics of the WP remain cons
along the straight-line trajectoriesx5X(t) termed the rays.
The value of the local wave vectork̃ at the pointx5xm(t)
corresponding to the spatial maximum of the WP envelo
equalskc . The description of the rays associated with t
WP propagation admits the Hamiltonian formalism: the ve
tors X(t) and k̃ determine the position of the dynamic sy
tem in the configuration~coordinate! space and in represen
tation ~momentum! space, respectively, while the frequen
v( k̃,X) plays the role of the Hamiltonian. For a homog
neous mediumv depends only onk̃ and the Hamiltonian
differential equations have the form

dX

dt
5

]v

] k̃
[W~ k̃!,

dk̃

dt
[F ]

]t
1W~ k̃!

]

]x
G k̃52

]v

]X
50.

~1!

The solutions of this Hamiltonian system represent
straight lines in the phase space$X,k̃% given by

X5X01W~ k̃0!t, k̃5 k̃0 , ~2!

whereX0 and k̃0 are arbitrary constants of integration alon
each ray. If an initial distribution of the wave vector in spa
is specified, thenk̃0 can be considered as a known functio
of X0 .

In dissipative ~absorbing! or active ~amplifying! media
the elementary waves that are harmonic in space deca
grow in time, while the time-harmonic waves decay or gro
in space. This leads to a formally defined complex gro
velocity vector@4–6# W5]v/]k. The complex Hamiltonian
equations and their generalizations for the spatially inhom
geneous absorbing media wherev5v(k,x) lead to the com-
plex raysX5X(t). The complex ray tracing was used as
1005 © 1998 The American Physical Society
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1006 57ELAZAR SONNENSCHEIN, IGOR RUTKEVICH, AND DAN CENSOR
mathematical tool for solution of some problems of wa
propagation in absorbing ionosphere@6,7# and in a hot toka-
mak plasma@8#.

When the medium is absorbing, the WP acquires so
new features in comparison with its behavior in nonabso
ing media. Thus, the velocity of the WP envelope maxim
Vm changes with time even in the case when the medium
homogeneous@4,9,10#. In addition, the local wave numbe
that can be determined at the point of the envelope maxim
also changes with time@4#. Consequently the vectorsVm and
W are not identical. In an absorbing medium vectorW is
complex at the point of the envelope maximum. Althou
the velocityVm can be expressed in terms of both real a
imaginary parts ofW, from the physical point of view the
concept of the complex group velocity becomes obscure.
the other hand, several examples existing in the litera
show thatW may represent a real physical velocity in a
absorbing@5,9,11,12# or amplifying @13# medium if under
some circumstances the vectorW becomes real. The case o
an absorbing system described by the one-dimensional h
conduction equation was analyzed in@11# where a purely
exponential ‘‘carrier wave’’ and a slow envelope in the for
of hyperbolic sine were considered. The carrier wave sa
fied the condition ImW50, which was fulfilled for purely
imaginary values ofk and the real group velocityW repre-
sented the velocity of propagation of the zero tempera
point. As was suggested in@12#, the WP and the group ve
locity concepts in absorbing media do not have to be ba
on the signals having real wave vectors or real frequenc
To some extent, this suggestion is confirmed by the anal
of the WP given in the present paper.

For a homogeneous absorbing medium the condi
Im W50 leads to some relationship between Rek and Imk
~and between Rev and Imv as well!. Under this condition
the solutions of the Hamiltonian system~1! presented by
Eqs. ~2! still determine the real raysX5X(t) along which
the SP wave vectork̃ keeps constant complex values that a
different for different rays. The purpose of the present pa
is to examine the role of the real rays provided by the
quirement ImW50 in the propagation of the one
dimensional WP in the homogeneous absorbing media an
show that such rays determine all local characteristics
WP for large times and distances.

The paper is organized as follows: In Sec. II the
method is employed for calculating the asymptotic form
the Fourier integrals containing the complex eikon
S(k,x,t)5kx2v(k)t and describing the WP in an absorbin
medium. Both spatial and temporal WP corresponding to
initial-value and boundary-value problems are consider
including the asymptotic form for the Gaussian packets
for the Green functions. It is demonstrated that for the ima
nary part of the eikonal ImSconsidered as a function ofk ~or
v!, the condition ImW50 is satisfied in the SPk5 k̃ ~or v
5ṽ! of the function ImS. In Sec. III the main properties o
the complex SP wave numberk̃(x,t) are analyzed. It is
shown that for absorbing media the role of the SP wa
number in the asymptotic behavior of the WP is similar
what was described by Whitham@3# for the WP in the purely
dispersive media where the values ofk̃ are always real.
Analogously to the nonabsorbing case, the real group ve
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ity W represents the velocity of propagation of the SP wa
number with the distinction that the wave number becom
complex.

In Sec. IV we present and investigate the exact analyt
solution for a Gaussian WP in a medium characterized by
quadratic complex law of dispersionv5(a2 ib)k2 to illus-
trate the features of the WP that are associated with the l
group velocity, which remains real in the presence of abso
tion. This solution can describe the propagation of the wh
tler WP in a collisional magnetosphere. In the particu
casesb50 or a50 the solution is converted to Gaussia
packets for the systems described by the Schro¨dinger equa-
tion or the heat conduction equation, respectively. So
properties of a Gaussian whistler WP in the presence of
sorption were briefly discussed by Muschietti and Dum in@4#
with the emphasis on the propagation of the maximum of
WP envelope. The main advantage of the exact solution a
lyzed in Sec. IV is in the fact that it gives a complete d
scription of the transition from the initial stage to th
asymptotic stage of the WP evolution in the presence of
k-dependent wave damping.

The structure of the exact solution allows one to det
mine the local complex wave number and the local comp
frequency, which differ from the SP values and approa
them for large times.

It is shown that the trajectory, along which the real part
the local wave number is equal to the carrier wave numb
represents the straight line and it is a genuine Hamilton
ray X(t) satisfying Eqs.~1! with ImW50. This property
demonstrates the importance of the concept of the real gr
velocity for absorbing media. For the whistler WP the re
value ofW represents the velocity of propagation of the c
rier wave number and it differs from the velocity of prop
gation of a Gaussian peak studied in@4#.

The main results are summarized and discussed in Se

II. THE SADDLE POINT METHOD FOR WAVE PACKETS
IN ABSORBING MEDIA

The description of linear waves propagating in a unifor
dispersive, and absorbing medium is commonly based on
elementary exponential solutions

exp~ iS!5exp@ i ~k•x2vt !#. ~3!

The relationship between the wave frequencyv and the
wave vectork is given by the dispersion equation

D~v,k!50. ~4!

For absorbing or active media the dispersion equation
complex: its solutionv5v(k) determines the complex fre
quencyv5v r1 iv i for real values of the wave vectork.
This means that the initial perturbation having the sinusoi
form in space will decay in time ifv i,0 and grow in time if
v i.0. The first case corresponds to an absorbing medi
while the situation withv i.0 is related to an active me
dium, in which the steady state is unstable with respec
small perturbations. We consider below only on
dimensional problems and assume that the vectork is di-
rected along thex axis, so that the complex eikonalS in Eq.
~3! has the form
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S5kx2v~k!t, ~5!

wherev(k) is the solution of Eq.~4!.
There are two main problems associated with the pro

gation of WP. The first is the initial-value~Cauchy! problem
where we investigate the evolution of the initial distributio
in spaceu(x,0), of some wave fieldu(x,t), satisfying a
partial differential equation

L~]/]t,]/]x!@u#50. ~6!

Here the linear differential operatorL is a symbolic poly-
nomial in ]/]t, ]/]x with constant coefficients. The dispe
sion equation~4! and the wave equation~6! are related by

D~v,k!5L~2 iv,ik !. ~7!

If the ordern of the polynomialL with respect to]/]t is
larger than 1, then the solution of the Cauchy problem can
determined when the functionu and its derivatives]su/]ts

for s51,2,...,n21 are specified fort50. Forn51 the solu-
tion of the Cauchy problem can be presented in the form
the Fourier integral

u~x,t !5E
2`

`

A~k!exp@ iS~k,x,t !#dk, ~8!

where S is the eikonal given by Eq.~5! and A(k) is the
Fourier transform of the initial distribution

A~k!5~2p!21E
2`

`

f ~x!exp~2 ikx!dx, f ~x!5u~x,0!.

~9!

If n.1 and all rootsv j (k) of the dispersion equation ar
different, then the solution of the Cauchy problem is giv
by a sum ofn integrals of the type~8! with different Aj (k)
andSj (k,x,t)5kx2v j (k)t.

The spatial WP is the continuous superposition of the p
nar waves~1!, whose wave numbersk are concentrated att
50 in the vicinity of the carrier wave numberkc . An often
used model of WP is the Gaussian packet, for which

A~k!5
C

DAp
expF2

~k2kc!
2

D2 G . ~10!

The corresponding initial distributionu(x,0)5 f (x) is the
Gaussian WP in thex space

f ~x!5C exp~ ikcx2x2/h2! ~h52/D!, ~11!

whereC is the amplitude of the WP envelope andh is the
half-width of the envelope att50. The half-width of the WP
in the k space isD52/h. In the limit h→` Eq. ~11! repre-
sents the harmonic wave in space and Eq.~9! results in
A(k)5Cd(k2kc). The transition to the opposite limith→0
with C5(hAp)21 results in the initial distributionu(x,0)
5d(x) andA(k)51/(2p). The solutionu(x,t) correspond-
ing to this initial condition is the Green function for th
Cauchy problem
a-

e

f

-

G~x,t !5~2p!21E
2`

`

exp@ iS~k,x,t !#dk. ~12!

The second problem is the boundary-value problem w
one needs to obtain the solutionu(x,t) in the half-spacex
.0, which is resulted from a given signalg(t) applied to the
boundaryx50,

u~0,t !5g~ t !5E
2`

`

B~v!exp~2 ivt !dv, ~13!

whereB(v) is the Fourier transform of the boundary sign
g(t). The solutionU(x,t) of the boundary-value problem
can be presented in the form of the Fourier integral

U~x,t !5E
2`

`

B~v!exp@ iS~v,x,t !#dv. ~14!

The eikonalS in Eq. ~14! is given by

S5k~v!x2vt. ~15!

Unlike the solutionu(x,t) of the initial-value problem,
which is determined by the complex functionv(k) for real
values ofk, the solutionU(x,t) of the boundary-value prob
lem can be determined when the complex functionk(v) is
specified for real values ofv. If for a given value ofv Eq.
~4! admits more than one solution, then the solutionU(x,t)
of the boundary-value problem may be presented as a su
integrals of the type~14! with different functions S j
5kj (v)x2vt.

The Green function of the boundary-value proble
Gb(x,t) is the solution corresponding to the boundary sig
g(t)5d(t). Similarly to Eq.~12!, this solution can be deter
mined by the Fourier integral of exp(iS) with the complex
eikonalS:

Gb~x,t !5~2p!21E
2`

`

exp@ iS~v,x,t !#dv. ~16!

One of the fundamental problems associated with
propagation of WP in an absorbing medium is the asympt
behavior of WP for large values oft and x when the WP
traverses a distance that is much longer than its initial wid
For most cases the asymptotic behavior of WP can be in
tigated by the saddle point~SP! method. The SP method ha
been extensively employed for the WP in lossless disper
media@3#. Extensions of the SP method to the cases of
sorbing media were made in@4,9,10#. Applications of the SP
method to calculating the Fourier integrals of the type~8!
usually includes three elements@2#: ~i! determining the SPk̃
for the function ImS considered as a function of the comple
variablek5kr1 ik i ; ~ii ! changing the integration contour~8!
from the realk axis to some other path in the complexk
plane, which passes through the SPk5 k̃ and yielding the
same value of the initial integration apart from contributio
of singular points of the integrand if such exist;~iii ! evalu-
ating the asymptotic value of the integral over the new p
making use of the fact that the integrand changes rapidl
the vicinity of the SP.
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The SP of the function ImS(k) is determined from the
equation

F]S~k,x,t !

]k G
k5kW

5x2tFdv~k!

dk G
k5 k̃

50. ~17!

Sincedv/dk is in general a complex quantity, for realx
and t Eq. ~17! is equivalent to two real equations:

ReS dv

dk D
k5 k̃

5
x

t
, ImS dv

dk D
k5 k̃

50. ~18!

For a lossless medium, wheredv/dk is always real for
real values ofk, Eqs.~18! prescribe the real SPk5 k̃r . The
quantitydv/dk is recognized in the theory of WP in lossle
media as the group velocityW(k). Thus, for a purely disper
sive medium the SP of the function ImS is characterized by
the conditions

k̃5 k̃r , k̃i50, ~dv/dk!k5 k̃5W~ k̃!5x/t. ~19!

In the general case where Eq.~4! is complex,

W~k!5Re~dv/dk!1 i Im~dv/dk! ~20!

is complex too for real values ofk. The SPk5 k̃ of the
eikonalS satisfying Eq.~18! is therefore complex. We sha
assume that at the pointk5 k̃ the second derivative of th
function S(k) does not vanish:

~d2S/dk2!k5 k̃52 i t ~d2v/dk2!k5 k̃Þ0. ~21!

In the complexk plane one can find the line of steepe
descentg passing through the pointk5 k̃, along which
ImS(k̃) takes the minimal value and, therefore,uexp iSu
5exp(2ImS) is maximized. The line of steepest descent c
be found from the equation

ReS~k,x,t !5ReS„k̃~x,t !,x,t…. ~22!

For givenx and t, which are considered as parameters
Eq. ~22!, this equation gives the relation betweenkr and ki
and, therefore, it determines some curve in the complek
plane.

The main advantage of the SP method for the asympt
calculations of the WP’s ast→` stems from the fact tha
after replacing the path of integration the integral alongg
can be easily evaluated due to the presence of a very s
maximum of the integrand atk5 k̃ @2#. The value of the
integral~8! can be calculated by taking the integral alongg:

u~x,t !5ug~x,t !5E
g
A~k!exp@ iS~k,x,t !#dk. ~23!

Recasting the eikonal in the formS5t@kx/t2v(k)# and
employing the well-known asymptotic formula@1# for the
integrals of the type~23! results in the asymptotic expressio
for ug(x,t) when t→` and ux/tu does not exceed any give
constant value:
t

n

ic

rp

ug~x,t !'S 2p

t~d2v/dk2!k5 k̃
D 1/2

A~ k̃!exp@ iS~ k̃,x,t !2 ip/4#.

~24!

Here k̃5 k̃(x/t) is the complex coordinate of the SP d
termined by Eq.~18!. In the case whenA(k) is given by Eq.
~10!, the asymptotic expression for the spatial Gauss
packet is obtained from Eq.~24! as

u~x,t !'
Ch

A2t~d2v/dk2!k5 k̃

3expF2
h2~ k̃2kc!

2

4
1 iS~ k̃,x,t !2 i

p

4 G . ~25!

For Ch51/Ap and h→0, Eq. ~25! is reduced to the
asymptotic formula for the Green function of the Cauc
problem

G~x,t !'
1

A2pt~d2v/dk2!k5 k̃

exp@ iS~ k̃,x,t !2 ip/4#.

~26!

As is seen from the comparison of Eq.~24! with Eq. ~26!,
the asymptotics of the general solution of the Cauchy pr
lem is determined by the value of the spectral functionA(k)
at the SP and by the asymptotics of the Green funct
G(x,t):

u~x,t !'2pA@ k̃~x/t !#G~x,t !. ~27!

The application of the SP method to the solution of t
boundary-value problem presented by Eq.~14! contains the
same steps as the asymptotic calculation of the Fourier i
gral ~8!. The complex SP (v5ṽ) of the eikonalS~v! is
determined from two real equations

ReS dk

dv D
v5ṽ

5
t

x
, ImS dk

dv D
v5ṽ

50. ~28!

These equations are similar to Eqs.~18! and they indicate
that in the SP of the eikonalS~v! the group velocityW
5dv/dk is real and its value isx/t, while the SP itselfṽ
5ṽ r1 i ṽ i is complex, and both quantitiesṽ r and ṽ i are
functions of x/t. The same value ofW is obtained at the
complex SP of the eikonalS(k). The analog of the
asymptotic formula~25! can be obtained also for the solutio
U(x,t) of the boundary-value problem.

It must be emphasized that our whole discussion pivots
the choice of Eqs.~18! and ~28! ~which for us is physically
plausible! thatx,t are real. Mathematically it is equally con
sistent to assume complex rays, e.g., as done by Connor
Felsen@9#.

III. LOCAL REAL GROUP VELOCITY AND
THE SADDLE POINT COMPLEX WAVE NUMBER

AS ASYMPTOTIC CONCEPTS

We concentrate here on the concept of the real gr
velocity W5x/t as the velocity of propagation of the con
stant wave numberk5 k̃(x/t) and the constant frequencyv
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5ṽ(x/t), which corresponds to the SP for the eikonalS
5kx2v(k)t in the complexk plane. This is the generaliza
tion of the concept of group velocity given by Whitham f
WP in dispersive lossless systems@3# to the case of disper
sive and absorbing media. For a spatial WP in an absorb
medium the function exp@iS(k̃,x,t)# determining the asymp
totics of the Green function for large values oft and for a
finite ratiox/t is not purely harmonic anduexp(iS)u is varying
in time and space. The value ofS at the SP is complex an
given by

S̃~x,t ![S@ k̃~x/t !,x,t#5Q~x,t !1 iF~x,t !,

Q~x,t !5 k̃r S x

t D x2ṽ r S x

t D t, F~x,t !5 k̃i S x

t D x2ṽ i S x

t D t.

~29!

Here ṽ5ṽ r1 i ṽ i5v@ k̃(x/t)#, the SP frequency, is th
value of the frequency calculated from the complex disp
sion equationv5v(k) at the pointk5 k̃, the SP wave num-
ber. In general bothk̃ and ṽ are complex. Equations~18!
indicate that fork5 k̃ and hence forv5ṽ, the group veloc-
ity W5dv/dk5x/t is real. This allows defining the rea
straight-line raysx/t5const in the (x,t) plane as the trajec
tories, along which the wave numberk̃ and the frequencyṽ
remain constant.

Thus, the real group velocityW5x/t appears in
asymptotic analysis as the velocity of propagation of the c
stant SP wave numberk5 k̃(x/t). It should be noted tha
only this concept of realW ~and not the concept of grou
velocity as the velocity of propagation of maximum of th
WP envelope! will persist in the presence of absorption. Th
local central wave number that can be determined in
vicinity of the envelope maximum doesnot remain constant
in an absorbing medium. Thus, for whistler WP in a co
sional plasma, the initial carrier wavelength of spatial os
lations for large values oft can be found in one of two wing
of the WP but not in its center. Such behavior will be de
onstrated in Sec. IV.

It can be easily checked that the SP valuesk5 k̃ and
v( k̃)5ṽ can be expressed through the partial derivatives
the SP phase functionS̃ defined in Eq.~29!:

k̃5]S̃/]x, ṽ52]S̃/]t. ~30!

Therefore,k̃ and ṽ satisfy the continuity equation

] k̃

]t
1

]ṽ

]x
5

] k̃

]t
1W~ k̃!

] k̃

]x
50, ~31!

which clearly indicates that the real group velocityW( k̃) is
the velocity of propagation of the complex wave numberk̃.
Equations~30! and ~31! are generalizations of the equatio
obtained by Whitham for purely dispersive homogeneo
media@3#. For an absorbing medium Eqs.~30! and ~31! are
complex.

It should be noted that for nonabsorbing media the ana
of the continuity equation~31! appears also in the ray theor
of quasiharmonic signals propagating in inhomogeneous
dia, including two- and three-dimensional problems@2#.
g

r-

-

e

-

-

f

s

g

e-

Such signals usually are considered in the fo
A(r ,t)exp@iS(r ,t)# whereA is the slowly varying amplitude
andS is the rapidly varying eikonal function. The local wav
vector is defined byk5]S/]r , which is equivalent to the
Sommerfeld-Runge law of refraction“3k50 @14#. The lo-
cal frequency is defined byv52]S/]t. These two relations
ensure the uniqueness of the eikonal integral representa
given by integration ofk•dr2v dt and provide the equation
]k/]t1]v/]r50 @compare with Eq.~31!#. The ray trajecto-
ries in an inhomogeneous medium are described by the
log of Eqs. ~1! with the distinction that]v/]X does not
vanish. This analogy stems from the fact that for large tim
and distances, in both situations the spatial and temp
variations of the WP envelope or the wave amplitude
slow in comparison with the eikonal variations.

Employing the Fourier integral~16! for studying the
asymptotic behavior of the Green function for the bounda
value problemGb(x,t) for large values ofx and finite ratio
t/x facilitates the definition of the complex SP frequencyṽ
5ṽ(x/t) on the basis of Eqs.~28!. The analog of Eq.~29!
can be obtained for the value of the eikonalS at the SP,

S̃~x,t ![S@ṽ~x/t !,x,t#5 k̃x2ṽt, ~32!

wherek̃5k(ṽ). The functionsk̃ andṽ satisfy the analog of
Eq. ~30!, in which S̃ should be replaced byS̃. Since bothṽ
and k̃ are functions ofx/t5dṽ/dk̃5W(ṽ), the real group
velocity again appears as the velocity of propagation of
SP complex frequency and the SP complex wave numbe

IV. EXACT SOLUTION FOR A GAUSSIAN WAVE
PACKET IN AN ABSORBING MEDIUM

WITH A QUADRATIC COMPLEX DEPENDENCE v„k…

In this section we consider the evolution of the spat
Gaussian WP characterized by the dispersion equation

v5~a2 ib!k2 ~33!

in a dispersive absorbing medium, wherea and b are non-
negative parameters. In accordance with Eq.~7!, the partial
differential equation corresponding to Eq.~33! has the form

L@u#[
]u

]t
2~ ia1b!

]2u

]x2 50. ~34!

The two popular particular forms of Eq.~34! are the
Schrödinger equation (b50) and the heat conduction equ
tion (a50). The complex law of dispersion given by E
~33! when both parametersa andb are nonzero describes th
whistler waves propagating in the terrestrial magnetosph
along the geomagnetic field lines@15#. The parametersa and
b for whistlers are determined by

a5c2vce /vpe
2 , b5ane /vce . ~35!

Here c is the vacuum light velocity,vce is the electron
gyrofrequency,vpe is the electron plasma frequency, andne
is the mean collision frequency of electrons. Similar wav
with a complex quadratic law of dispersion termed helico
are known in semiconductors and metals in the presenc
an external magnetic field@16#. For the helicons propagatin
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along the magnetic field the parameters of the dispers
equation~33! can be calculated from the same formulas~35!
as for whistlers.

When the initial distributionu(x,0)5 f (x) is a Gaussian
WP given by the real part of Eq.~11!, the solution of the
Cauchy problem for the law of dispersion given by Eq.~33!
has the form

ū5
u~x,t !

C

5
1

DAp
E

2`

`

cos~kx2ak2t !

3exp@2bk2t2D22~k2kc!
2#dk. ~36!

This integral allows an exact analytical representat
@17,18# as a function of parametersx, t, a, b, kc , and D.
Introducing the dimensionless quantities

j5kcx, t5bkc
2t, N5kc /D, a5a/b, ~37!

Eq. ~38! can be recast as a function of two dimensionle
variablesj andt containing two dimensionless parametersN
anda:

ū~j,t!5E~j,t!cos@u~j,t!#,

E~j,t!5
exp@2c~j,t!#

@~11t/N2!21a2t2/N4#1/4, ~38!
ion
an

c-
io

e

e

/
nd
n

n

s

where

c~j,t!5
~11t/N2!@j2jm~t!#2

4@~N1t/N!21~at/N!2#
1

t

11t/N2 ~39!

and

jm~t!52at/~11t/N2! ~40!

and

u~j,t!5q~j,t!2w~t!,

q5
j~11t/N2!2at1aj2t/~4N4!

~11t/N2!21a2t2/N4 ,

w5
1

2
arctanS at

t1N2D . ~41!

In the casea@1 the functionq~j,t! represents the fas
varying spatial and temporal oscillations, whilew~t! is the
slow varying phase of these oscillations. In the particu
caseb50 the right-hand side of Eq.~38! is reduced to the
solution for a Gaussian WP in a nonabsorbing medium@19#.
The transition to the limitb→0 means that in Eqs.~38!–
~41! a→`, t→0 andat→akc

2t. The result of this limiting
case is
ū5
exp@2D2~x22akct !

2/4~11a2D4t2!#cos@~kcx2akc
2t1aD4x2t/4!/~11a2D4t2!2 1

2 arctan~aD2t !#

@11a2D4t2#1/4 . ~42!
e
rt

-
city

ial
i-

he
In the opposite limiting case (a50) Eq.~38! becomes the
solution of the Cauchy problem for the heat conduct
equation with the initial condition in the form of a Gaussi
WP

ū5~11bD2t !21/2 expF2
D2x214bkc

2t

4~11bD2t ! GcosS kcx

11bD2t D .

~43!

In the limit D→`, for G(x,t)5Cũ with C5D/(2Ap),
Eq. ~43! results in a well-known formula for the Green fun
tion of the Cauchy problem for the heat conduction equat
~see, for example, Ref.@20#!.

The analysis of the exact solution given by Eqs.~38!–~41!
when both parametersa andb are nonvanishing shows th
following features of WP:

~i! As follows from Eqs.~38! and ~39!, the form of the
WP envelope determined by the functionE(j,t) remains
Gaussian for all times. The magnitude of the envelop
maximum ~at the pointj5jm! decays exponentially fort
!1/(bD2) and undergoes a power decay according to 1At
at t→`. The width of the envelope increases with time a
behaves as a linear function of time fort!1/(bD2). For
n

’s

t→` the envelope width increases asAt. Thus, the
asymptotic behavior of the envelope fort→` is determined
by the wave absorption.

~ii ! The spatial maximum of the WP envelopex5xm(t)
5jm /kc propagates with the velocity

Vm~ t !5
dxm

dt
5

2akc

~11bD2t !2 5
Wr~kc!

~11bD2t !2 . ~44!

As is seen from Eq.~44!, in the presence of absorption th
velocity of the envelope maximum differs from the real pa
of the group velocityWr(kc) calculated for the initial carrier
wave numberkc . Only for t50 do these two velocities co
incide. The envelope center is decelerating and its velo
Vm(t) tends to zero as 1/t2 whent→`. The evolution of the
WP envelope is shown in Fig. 1.

~iii ! WhenN2@1, i.e., the characteristic number of spat
oscillations inside the WP is sufficiently large, the denom
nator of the ratio in right-hand side of Eq.~38! is a slowly
varying function of t in comparison with the functions
exp(2c) and cosu. In this case it is reasonable to define t
local complex wave numberk* and the local complex fre-
quencyv* as
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FIG. 1. The spatial envelope of the WP determined by Eqs.~38! and ~39! with a5200, N57 as a function of the dimensionles
coordinatex̄5Dx for various values of the dimensionless time variablet5bkc

2t: ~a! t50, ~b! t51, ~c! t55. In ~c! H is the point in which
the real part of the local wave number is equal to the initial carrier wave numberkc and the local group velocity is real.
of

e
in-

e.
kr* 5
]q

]x
5kc

]q

]j
, ki* 5

]c

]x
5kc

]c

]j
,

v r* 52
]q

]t
52bkc

2 ]q

]t
, v i* 52

]c

]t
52bkc

2 ]c

]t
.

~45!
The quantitykr* characterizes an inverse wavelength
the spatial oscillations in the vicinity of the point (x,t),
while the quantityki* represents an inverse length of th
exponential decay of these oscillations in space in the vic
ity of the same point. The quantitiesv r* and 2v i* have
analogous meaning with respect to the WP behavior in tim
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For large values oft, the local wave numberk* and the
local frequencyv* approach the SP values,k̃ andṽ, respec-
tively:

k* ~x,t !→ k̃~x/t !, v* ~x,t !→ṽ~x/t !

~ t→`, ux/tu,const!, ~46!

wherek̃ and ṽ are given by

k̃5
~a1 ib!x

2~a21b2!t
, ṽ5~a2 ib!k̃25

~a1 ib!x2

4~a21b2!t2 .

~47!

As is seen from Eq.~47!, the complex quantitiesk̃ andṽ
are constant along the straight-line raysx/t5C. These rays
are the asymptotic lines for the curvilinear trajectories, alo
which one of the quantitieskr* ,ki* ,v r* ,v i* is constant.

~iv! The trajectorieskr* 5const determined by the first of
Eqs.~45! and by Eq.~41! are as follows:

x5X~ t !

5
2kc$@~11bD2t !21a2D4t2#~kr* /kc!2~11bD2t !%

aD4t
.

~48!

The exact solution presented here shows that only at
50 is the real part of the local wave numberkr* spatially
uniform and equal to the carrier wave numberkc . For any
small t.0 the WP acquires an inhomogeneous filling: an
given value of the wavelength can be found within the W
In the far-distance parts of the WP wings, very short loc

FIG. 2. The spatial oscillations within the Gaussian envelo
calculated from the exact solution witha5200, N57, andt51.
The dimensionless coordinate and time are defined asx̄5Dx and
t5bkc

2t.
g

.
l

wavelengths appear fort.0, so thatkr*→6` when x→
6`. The filling of the WP is not symmetric with respect t
its center: any fixed pointP from the right wing of the WP is
characterized by shorter waves than the symmetric pointP8
at the left wing~see Fig. 2!. The family of trajectorieskr*
5const in (x,t) plane described by Eq.~48! is shown in Fig.
3. As is seen from this figure, for small timest sufficiently
large values ofukr* u propagate from the wings to the centr
part of the WP and after reaching the turning points wh
dx/dt50 they propagate back to the wings, so that fort→`
the velocity of propagation of a given value ofkr* tends to
the real group velocityW* 5W(kr* 1 ibkr* /a).

The straight-line trajectoryG corresponding tokr* 5kc is
exceptional since it represents the genuine Hamilton
ray,along which the constant valuekr* 5kc propagates with
the real constant group velocity, i.e.,dXH /dt5W(k* ) where
the complex numberk* 5(11 ib/a)kc is constant. This ray
is described by

x5XH~ t !52~kc /a!@b/D21~a21b2!t#. ~49!

On the straight lineG both real and imaginary parts of th
local wave numberk* remain constant for all timesunlike
other trajectories shown in Fig. 3, along which onlykr* is
constant whileki* varies. Any curvilinear trajectory, for
which kr* differs from the carrier wave numberkc , ap-
proaches some straight-line Hamiltonian ray for large tim
t@ta where

ta5
u12kc /kr* u

~a21b2!1/2D2 . ~50!

~v! The trajectorieski* 5const are given by

e

FIG. 3. The space-time trajectories along which the real par
the local wave numberkr* is constant calculated for various value
of the parameterk r5kr* /kc with a5200,N57. The dimensionless
coordinate and time are determined asx̄5Dx and t5bkc

2t. The
straight lineG shown fork r51 is a Hamiltonian ray transferring
the initial carrier wave number. The values of the parameterkr* for
curves 1–6 are 2.4, 1.6, 1, 0.5, 0, and20.5, respectively.
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x5X̂~ t !5
2akct12ki* @D2212bt1~a21b2!D2t2#

11bD2t
.

~51!

The family of curveski* 5const is shown in Fig. 4. This
family contains, in particular, the trajectoryM of the spatial
maximum of the WP envelope sinceki* 50 along M . The
curve M intersects various trajectorieskr* 5const shown in
Fig. 3: the central wave numberkr* „xm(t),t… decreases con
tinuously with time and tends to zero ast→`. Determining
the coordinate of the envelope maximum from Eq.~51! with
ki* 50 and inserting this value ofx in the left-hand side of
Eq. ~48! allows determining the central wave numberkm(t)
5kr* „xm(t),t…. This results in

km~ t !5kc /~11bD2t !. ~52!

This formula can be also obtained from the condition
maximum of the absolute value of the spectral function
the WP ink space@see the integrand in the right-hand side
Eq. ~36!#. Formula~52! was given in@4# where the lowering
of the central wave number with time due to the different
absorption was shown.

The exceptional straight-line trajectoryG shown in Fig. 3
and described by Eq.~49! is also included in the family
given by Eq.~51! slince alongG the value ofki* is constant
and equalskcb/a. Any trajectory for whichki* differs from
kcb/a, for large timest@tb , approaches the straight lin
Hamiltonian ray, whose slope is equal to the real group
locity W(aki* /b1 ik i* ). The timetb is determined by

tb5
u12aki* /bkcu

bD2 . ~53!

FIG. 4. The space-time trajectories along which the imagin
part of the local wave numberki* is constant calculated for variou
values of the parameterk i5ki* /kc with a5200,N57. The dimen-
sionless coordinate and time are defined asx̄5Dx and t5bkc

2t.
The curveM corresponding tok i50 is the trajectory of the enve
lope’s maximum. The straight lineG corresponding tok i50.005 is
the same Hamiltonian ray as in Fig. 3. The values of the param
ki* for curves 1–6 are 0.024, 0.012, 0.005, 0,20.012, and20.024,
respectively.
r
f
f

l

-

As is seen from Fig. 4, the positive values ofki* , i.e., the
local values of the inverse attenuation length of the WP
velope in the positivex direction, propagate to the right win
of the WP with the velocities that increase withki* . The
negative values ofki* propagate to the left wing, excludin
some initial range of the valueski* ,0, for which the trajec-
tories ki* 5const possess the turning points. If the relati
deviations of the quantitieski* andkr* from their values on
the straight-line rayG, i.e., the numerators in Eqs.~53! and
~50!, are of one and the same order and if, in addition,b
!a, then the timetb is much longer than the timeta . This
means that along the curvilinear trajectories transferring
constant values ofkr* the difference of the real parts of th
local wave number and the SP wave number becomes
ligible much faster than the difference of their imagina
parts.

The obtained solution allows one to investigate two m
stages of the WP evolution, the short-time~initial! stage and
the long-time~asymptotic! stage. The initial stage is charac
terized by the instant appearance of all possible wavelen
within the WP envelope. The new local waves with the v
ues ofkr* different from the carrier wave numberkc appear
at exponentially small wings of the envelope, propagate
the domain wherekr* 'kc until some critical timet5tcr and
then go away from this domain as is seen in Fig. 3. It m
be noted that we are dealing with a linear partial differen
equation, therefore, spectral components cannot be creat
destroyed. However, different spectral components are
ferently affected by attenuation, and thus the relative sign
cance of various spectral components can vary in space
time. Forukr* u@kc the critical timetcr is given by

tcr'D22~a21b2!21/2. ~54!

The first stage of the WP evolution is provided mainly
the dispersive properties of a medium and this stage ex
also in the absence of absorption (b50).

The asymptotic stage (t@tcr) corresponds to the WP pa
tern that can be obtained by the SP method. In the limt
@tcr and ux/tu,const, the local complex wave numberk*
and the local complex frequencyv* tend to the SP valuesk̃
and ṽ. In the caseb!a, which is of interest for studying
the propagation of the whistler and helicon WP’s, the critic
time tcr is of order of the time scale 1/(aD2) of a wave,
whose length is of order of the initial width of the WP. Fo
t@tcr each small part of the WP can be characterized by
complex quantityk̃, which keeps a constant value along t
ray x/t5W( k̃) whose slopeW( k̃) is the real group velocity.
Since along the rayx/t5W( k̃) the SP value of the eikonal i
complex,

S̃5 k̃x2ṽt5~V1 iL!t,

V5W2~ k̃!a/4~a21b2!, L5bV/a, ~55!

the time-dependent behavior of any local portion of the W
that could be observed in the frame of reference moving w
the real group velocityW( k̃) should be seen as an expone
tially decaying oscillation described by the leading fac
exp(iS̃) of the asymptotic solution given by Eq.~24!. The
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nonexponential factor in Eq.~24! varies slowly along the
straight line x/t5W( k̃) and behaves as 1/At. Since the
damping rateL is proportional to the frequencyV, this re-
sults in a nonuniform damping of various parts of the WP,
that the high-frequency wings are subjected to the stron
suppression in the process of propagation.

As is seen from the asymptotic formulas~47!, for any
fixed value ofx, the SP wave number and the SP frequen
tend to zero whent→`. When the timet increases, the tai
part of the signal reaching a given pointx5const.0 is char-
acterized by continuous lowering of both the local gro
velocity W5x/t and the local frequency that approaches
SP frequencyṽ5W2/4a. Forx5const.0 the exact solution
~38! considered as a function of time represents a temp
signal filled with the oscillations whose local frequency d
creases with time. The form of the temporal envelope is
Gaussian and it is not symmetric even in the absence
absorption. The temporal WP described by the exact solu
~38! for two various values ofx are shown in Figs. 5~a! and
5~b!. The lowering of the local frequency of the oscillation
within the temporal envelope is demonstrated in Fig. 6.

Direct calculation of the local complex frequencyv*
from Eqs.~45! and~39!–~41! shows that both real and imag
nary parts ofv* remain constant for all timesalong the
Hamiltonian rayG defined by Eq.~49!. The relation between
v* andk* alongG follows exactly the dispersion equatio
~33! as it would be for the case of the elementary exponen
solution presented by Eq.~3!. Unlike the local frequency on
the rayG, the local frequency at the point of the maximum
the temporal envelope decreases with time along the m
mum trajectory. This property is similar to the lowering
the local wave number at the maximum of the Gaussian s
tial WP envelope; see Eq.~52!.

V. DISCUSSION AND CONCLUSIONS

The main objective of this work is to examine the role a
significance of the real group velocity in the WP propagat
in an absorbing homogeneous medium. In an absorbing
dium the group velocity vectorW is, generally, complex and
it represents some mathematical subject derived from a c
plex dispersion equation. In spite of the fact that such a co
plex vector does not admit a physical interpretation, it can
employed for calculations of some important physical ch
acteristics of WP in an absorbing medium. Thus, the velo
of the spatial@4,9# and temporal@4,10# envelopes can be
determined in terms of both real and imaginary parts of
vectorW at the maximum. On the other hand, for an abso
ing medium, one can point out the exponential waves of
form ~3!, for which vectorW is real due to the special choic
of the complex wave vectork @5,11,12#. As is shown in the
present paper, such a real group velocity does have a ph
cal meaning that comes to light when the asymptotic beh
ior of the WP is investigated.

An application of the SP method to calculating t
asymptotic form of the Fourier integrals, describing the s
tial one-dimensional WP in an absorbing media, leads to
condition for the real group velocity in the SPk5 k̃. When
the dispersion equation is complex, the SP wave numbk̃
also is complex and it completely determines the asympt
forms of the WP and of the Green function as well, Eqs.~25!
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and ~26!, respectively. Employing the SP method for stud
ing the asymptotic stage of the WP evolution is not restric
to the case of weak absorption and the SP method can
applied also to the systems for which the absorption effe
dominate. For example, this method results in the corr

FIG. 5. The temporal envelope of the signal determined by E
~38! and~39! with a5200,N57 as a function of the dimensionles
time t5bkc

2t for various values of the dimensionless distan
x̄5Dx: ~a! x̄5100,~b! x̄5500. In Fig. 5~b! G is the point in which
the local frequencyv* provides the real value of the local grou
velocity.
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expression for the asymptotics of the Green function for th
heat conduction equation, in which the SP wave numberk̃ is
purely imaginary.

The important feature of the asymptotic behavior of the
WP demonstrated in Sec. III is the fact that despite the pre
ence of absorption, the real group velocity appears as a loc
characteristic of any small section of a WP through the loca
complex SP wave number, which depending on the rat
x/t5W only. This leads to the generalization of the concep
of the group velocityW( k̃) established by Whitham@3# for
nonabsorbing media as the velocity of propagation of th
constant wave numberk̃. This role of the real group velocity
has been found to be universal and applicable to the abso
ing media, unlike the sometimes conventional concept of th
group velocity as the velocity of the envelope maximum
@19#, which fails in the presence of absorption.

The analysis of the exact solution for a Gaussian W
propagating in a medium with the quadratic complex law o
dispersion performed in Sec. IV has shown quite nontrivia
features of the trajectories in the (x,t) plane, on which the
real part of the local wave numberkr* remains constant. As is
seen in Fig. 3, forkr* Þkc , where kc is the initial carrier
wave number, the trajectorieskr* 5const possess turning
points and for large times they approach the straight-lin
Hamiltonian rays characterized by the real values of th
group velocity. It has been found that the trajectoryG on
which kr* 5kc is a Hamiltonian ray. Thus, for all times the
carrier wave numberkc propagates with constant real group
velocity. This property is not related to the asymptotic be
havior of the WP: here the real local group velocity is mani
fested from the very beginning (t50). This result is of cru-
cial importance for the recognition of the role that the rea
group velocity may play in the propagation of WP.

The explanation of the existence of the straight-line tra

FIG. 6. The temporal oscillations within the temporal envelope
calculated from the exact solution witha5200, N57, andx̄5Dx
5100. The dimensionless time variable is defined ast5bkc

2t.
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jectoryG is as follows: as is seen from Eq.~11!, for t50 the
filling of the Gaussian WP by the spatial oscillations is u
form: kr* (x,t50)5kc , while the imaginary part of the loca
wave numberki* changes monotonically from2` at x5

2` to ` at x5` passing through the zero valueki* 50 at
the envelope maximum (x50). Therefore, in the domain 0
,x,` one can find a pointx5 x̃, at which ki* 5bkr* /a.
This relationship betweenkr* and ki* provides a real group
velocity W at x5 x̃. The obtained solution indicates that in
homogeneous medium the initial carrier wave number m
propagate with the real group velocity at all times if th
requirement ImW50 is satisfied at some point of the W
profile att50. For arbitrary complex dispersion equation t
point with ImW50 may or may not exist within the initia
WP profile. Thus, for a Gaussian WP propagating in a m
dium that is described by the heat conduction equation,
initial group velocity is complex for all values ofx if kc
Þ0. In this and similar cases the real group velocity is
vealed only on the asymptotic stage of the WP evolution

The results of the present work can be compared w
those obtained by Muschietti and Dum@4#, who applied the
SP method to the analysis of the characteristics of the
envelope’s maximum~such as variations of the central ve
locity and the central wave number!. For the whistler WP in
a collisional plasma these features of the WP center are
produced by the exact solution given in Sec. IV of t
present paper; see Eqs.~44! and~52!. According to Muschi-
etti and Dum@4#, studying the real trajectory of the envelop
maximum raises the possibility for alternative ray traci
without employment of the rays belonging to the compl
world. In this connection it is worthwhile to note that for a
absorbing medium the real trajectory of the WP center is
a Hamiltonian ray. On the other hand, the rays along wh
the SP wave number is propagated, for example, the
serving as asymptotic lines for the trajectorieskr* 5const,
including the straight-line rayG ~see Fig. 3 of the presen
paper!, are genuine Hamiltonian rays belonging to real (x,t)
world.

The velocity of the envelope peak is an important char
teristic of the WP. However, in an absorbing medium a pe
velocity is not a group velocity due to the fact that the wa
group is marked by its wave number or frequency and th
quantities change with time at the center of the WP. F
large times the group of oscillations with the carrier wa
numberkc can be found far away from the WP center. Su
a behavior is displayed even for a weak absorption. Thi
seen from the comparison of the trajectoryM of the WP
peak and the Hamiltonian rayG ~Fig. 4!. The same phenom
enon is reflected by the position of the pointH in Fig. 1~c!
showing the distancex ~for a fixedt! where the carrier wave
number can be observed.

To estimate the influence of damping on the typical wh
tler WP propagating in the Earth’s magnetosphere we u
the following parameters: the carrier wavelengthlc
52p/kc52000 m, the width of the initial Gaussian env
lope 2h58900 m, the electron plasma frequencyvpe
51.8 MHz ~this value corresponds to the electron dens
ne51000 cm23!, the electron gyrofrequency vce
50.26 MHz ~this value corresponds to a magnetic fieldB
50.015 G!, and the collision frequencyne51.3 kHz. These
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parameters provide the valuesN57, a5200 used in calcu-
lations of the characteristics of the WP shown in Figs. 1

The distance between the spatial envelope maximum
the position of the carrier wave number marked by pointH
in Fig. 1~c! is close to 60 km and, according to Eq.~52!, the
lowering of the central wave number is 9%. For the tempo
signal envelope shown in Fig. 5~b!, which was calculated for
the dimensional distancex51100 km, the time shift betwee
the envelope maximum and the pointG corresponding to the
carrier frequencyV57.1 kHz is close to 0.002 s. Compare
to the carrier frequencyV, the frequency at the envelop
maximum drops by 30%.

We may conclude that the real group velocity in abso
f

p

.
nd

l

-

ing media will appear as the important physical characteri
of the WP and signals, which are intended for the propa
tion of some prescribed carrier frequency. Such a situa
occurs, for example, when a carrier frequency has to be
tected by the narrow band receiver at a large distance f
the source, and the relevant part of the propagating sig
leaves the envelope peak due to the differential absorpti
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